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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE 2743

LANDING-GEAR IMPACT

By W.‘Flﬁgge
SUMMARY

This report deals with the impact forces in landing gears. Both
the landing impact and the taxying impact have been considered, but drag
forces have been so far excluded.  The differential equations are devel-
oped - and thelr numerical integration is shown, considering the nonlinear
properties of the oleo shock strut. A way is shown how the dimensions
of the metering pin may be determined from a given load-time diagram.

A review of German literature on landing-gear impact is also presented.

INTRODUCTION

The objective of this report is to study the impact forces acting
on the wheels and shock struts of an airplane. For practical reasons
the investigation has been limited to the vertical forces and does not
consider the effect of the drag load which acts on the wheels during

the spin-up time. Within the 1limits drawn by this restriction, an attempt

has been made to develop a method for numerical computations which, it
is hoped, will be useful in practical design work.

The oleo-pneumatic shock strut which is now in general use and
which has attained a high degree of perfection exhibits a rather com-
plicated relation between the force, the stroke, and the rate of stroke.
For practical work, it is imperative to express this relation in mathe-
matical form and to develop a method for the numerical solution of the
ensuing differential equations. A detailed discussion of this subject
will be found in the section "Intentional Nonlinearities."

Nevertheless it is sometimes useful to consider a highly idealized
type of landing gear which has linear differential equations. Although
such a model will never correctly reproduce the details of the real
landing impact, it admits of easy mathematical treatment and permits
study of gquestions of a more general character. This has been done in
the section "Linear Spring-Damper Systems" and the usefulness of the
results obtained there lies in the fact that they do not depend on the
more or less incidental details of real landing gears which unavoidably
enter the computations of the nonlinear theory.
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The later sections of the report are devoted to refinements of the
method. Except for the simple mass corrections, they will not be used
in daily routine work, but they may be of particular importance when
airplanes of unusual design are built.

This work was conducted at Stanford University under the sponsorship
and with the financial assistance of the National Advisory Committee for

Aeronautics. .

While preparing this report the author has received valuable
information on current American practice through Mr. J. F. McBrearty,
Lockheed Aircraft Corp., Mr. K. E. Van Every, Douglas Aircraft Co., Inc.,
and Mr. A. I.-Sibila, Chance Vought Aircraft, for which he wishes to
express his thanks. He also wishes to thank Mr. C. W. Coale for his
active help throughout the preparation and the writing of this report..

SYMBOLS

An, By coefficients

Ao | inner cross séction of barrel at oil level

A total cross section of piston

As : inner cross section of piston

A3 ' ' area of gap between metering pin and edge of orifice

a, b distances of landing gears from center of gravity (used
only in section "The Airplane as a Whole")

b | damping constant for one shock strut (used only in section
"Linear Spring-Damper Systems')

Fo force in strut when strut is fully expanded and at rest

¥ ] compressive force in shock strut

Fo compressive force between wheel and ground (if different
from F1)

F3 . force in auxiliary landing gear

g acceleration due to gravity
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v Iy

x = V/m

Iy/m

[N
I

Xp

height of obstacle encountered during taxying

moment of inertia of airplane with respect to longitudinal
and lateral axis, respectively

radii of gyration

spring constant for one shock strut
spring constant for one tire

mass of airplane
that part of mass m attributed to one landing gear

unsprung mass for one landing gear

pressure in both chambers when strut is fully expanded
and at rest

pressure in upper chamber of strut
preséure in lower chamber of strut
reference time

time

vertical velocity of landing gear when it first touches
ground '

oil velocity in orifice

vertical force, other than impact force, acting on
airplane (weight minus 1ift)

" that part of force W attributed to one landing gear

stroke of shock strut
vertical displacement of mass mj

vertical displacement of unsprung mass mo
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used instead of x; when a second landing gear must be

X
3 considered simultaneously
Z displacement bf center of gravity of airplane )
a angular displacement (angle of pitch) of aifplane in its
plane of symmetry
7 ' ratio of specific heats
8 static deflection of mass mj

p density of oil

All displacements are zero when the wheels touch the ground without
pressure. '

LINEAR SPRING-DAMPER SYSTEMS

Differential Equations .

- Essentially, a landing gear consists of a shock strut and a wheel .

with a tire. The shock strut may be compressed considerably. It opposes

this deformation with an elastic force increasing with increasing stroke

and with a damping force which depends on the rate of stroke and-which
dissipates mechanical energy. This shock strut may be represented by a

spring and a damper arranged in parallel (fig. 1). The tire is for the

present purposes a sgimple spring whose deformation is more or less pro-
portional to the applied force.

Between these two deformable elements there is the mass m, of

the wheel, including those parts of the shock strut which participate in
the motion of the wheel. On top of the whole landing gear there is the
airplane mass or, more exactly, that portion my of the airplane mass

which belongs to the landing gear under consideration.

When the airplane lands, this system approaches the ground with a
considerable velocity. As long as the spinning up of the wheels is not
considered, only the vertical component V of this velocity is of
interest. The impact begins when the lower end of the landing gear
touches the ground. This instant is designated t = O, and the vibra-
tions of the masses my and m, are studied which follow for t >0
when the motlon of the lower end of the spring-mass system is suddenly

stopped. .
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, Linear differential equations are obtained when the shock strut is
replaced by a simple spring and a viscous damper (dashpot) and when

the tire is assumed to be a linear spring. There might also be a linear
damper coupled with the tire but, compared with the shock-strut damping,
the contribution of the tire to damping is so small that it does not
seem worth while to include it in the equations.

The differential equations of the landing- gear impact will now be
formulated. Figure 2 shows the mechanical system in two positions, one
for t = 0 and the other for some later time. The displacements of
the masses m; and mp, measured from their positions at t = 0, are

called x; and Xp, respectively. Their difference

is the stroke of the shock strut.

If k, is the spring constant of the tire, then the force trans-
mitted from the ground to the unsprung mass m, is

Fp = kpXo | (1a)

On the other hand, the force in the shock strut is the sum of an elastic
force kjx and of a damping force which, in linear theory, must be assumed

proportional to the velocity x = dx/dt with which the masses m and my
approach each other: , .

Fy = kjx + bx ' (1p)

The third force is the load Wl which acts as an external force on the

mass my. It is a part of the weight of the airplane minus a corre-

sponding part of the wing lift. It will be shown in the section "The
Airplane as a Whole" what part of the total weight and 1lift must be
attributed to each landing gear.

The three forces Wy, Fq, and F, determine the motion of the
masses mj and mp, according to the equations

m2x2 = Fl - F2




6 NACA TN 2743 |

When F; and Fp are expressed here by x and x, according to
equations (1la) and (1b), or better still by x; and X, the differ-
ential equations of the linear landing gear are obtained:

m¥y + (% - %) + Ky(xg - xp) = (22)

my¥p - b(ky - %p) - Ky(x - xp) + koxp = 0 (2b)

The problem is of the fourth order and requires four initial conditions
for t = 0. Before its solution is given, a simplified version will be
considered which is sufficient in most cases.

Solution Neglecting Unsprung Mass

- The unsprung mass mp is rather small, usually between 2 and
5 percent of the mass mj. Under certain conditions it has a very

definite influence on the force in the landing gear. But it will be
.seen that it is only of minor importance for the early phase of the
landing impact, up to and beyond the maximum of the impact force. One
may therefore begin with a simplified set of differential equations,
obtained from equations (2) by dropping the term with mo:

myxy + b(il - ig) + kl(x1 - xg) = Wy (3a)

(% - fp) - kl(xl - %Xp) + KXy = O | (3Dp)

Since X; and X, are the highest derivatives occurring in these

equations, the problem is of the third order; and there must be three
initial conditions.

Two of them follow from the fact. that the displacements x; and xp
are counted from the position of the system at t = 0. Therefore

t = 0O x3 =0, Xo = 0
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The third condition is that the mass m; has at this time the veloc-
ity V:

It is useful to replace the second condition by an equation for xj.
This may easily be done by introducing all three conditions in the dif-
ferential equations. Eguation (3b) yields X, = V, and it is seen here
that this is not an independent fourth condition, as one might feel
inclined to think. Equation (3a2) yields now:

ct
i
o

X = Wi/m

and this initial relation may be used instead of any one of the other
three, preferably instead of xp = O.

One may easily find a particular solution of differential
equations (3):

N
k, +
> ()
W
1
X2 = EE

o

It describes the position in which the system is In equilibrium under
the load W;. Besides this, the solution of the homogeneous equations
1s needed. Since all coefficients of the equations are constant, the
homogeneous solutions are exponential functions of time, say

Xl = AeXt

Xy = Be>”t

When this solution is introduced into equations (3a) and (3b) after
dropping there the term Wy, two linear equations are found for A

and B:
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A(mlx2 + DM+ kl> - B(br + X&) =0
| - s :

a(or + k) - B(bh + Ky + kp) = O
Since these equations are homogeneous, they will not have a solution

A#£0, B#O0 unless the determinant of the coefficients vanishes, and
this condition yields the characteristic eguation of the problem:

)\‘3_1_‘kl+k2)\,2+§)\,+l_k2=0, (6)
b my mlb

It is of the third degree. One of its three roots must be real and,
since all coefficients are positive, this root must necessarily be
negative, say

)\.=-)\I3

The other two roots may also be real and negative,

A= -xl
and

>\,=f)\,2
or they may be conjugate complex:

A= tiy

It may easily be shown that in this case the real part must be negative,
- .

For the rest of the formal treatment the caées of real and of
complex roots A must be separated.
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High damping, all roots real.- In the case of high damping with
all roots real the general solution of differential equations (3) is

ﬂ
Ky o+ Mt Aot At
Xl = wl —l—k—k—kg + Ale 1 + A2e 2 + A3e 3
172
> (7)
1 -At -Ant -Aqt
X2 = Wl -1-{5 + Ble 1% 4 Bge 2 + B3e 3

P

In these formulas only the constants Aj, Ay, and A3 may be chosen
arbitrarily, while B;, Bp, and B3 depend on them through equa-
tions (5), in which in each case the appropriate A must be inserted.

When t 1s set equal to zero and then x; and its derivatives are

introduced in the initial conditions, a set of three linear equations is
obtained for A;, Ap, and A3 They are:

1 1
Ay + Ay + Ag = -Wqle= +. =]
17 o2 3 1<kl kg)

)"lAl + Aphp + )»3A3 = =V

\Y
2 2 2p, = L

They must be solved numerically, and then the displacements may be
found for any time t.

The most interesting quantities are the stroke x = x; - xp and
the impact force F,. For both the B's are needed in terms of the A's:

kg - br,
Bp = Ap K+ i - by n=1,2, 3 (8)

and then

_ W1 Ako Mt Agkp R o M3t
X% TR 7 x - o0 k] + Ky - DAp ¥ ky - B3
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and . ’ »
Fl = F2

= koXp

At Mgt Azt
Wl + k2<Ble + Boe + B3e 3 )

The coefficients Bp need not necessarily be positive. Then there
may occur a time t > 0, where Fo = 0. If this happens, it would

terminate the domain of validity of the formulas. For greater values
of t, the force Fo, would not become negative (i.e., tensile), but

the wheel would leave the ground; the airplane would rebound.

Because of the force Wp, the airplane would soon return to the

ground. Meanwhile its horizontal speed or the angle of attack might
have decreased and hence W; 1increased. The vertical velocity at the
second impact would be, on the other hand, considerably smaller than V.
The new impact would therefore be less violent, but not necessarily -
uninteresting, because it would find the shock strut in a less favorable
condition, with x >0 and, perhaps, close to the possible limit.

Whether rebounding will occur and how strong the second impact will
be can be determined only from detailed numerical computations in each
particular case. But one may say quite generally that the probability
of a zero of F, 1is greater the more solutions the homogeneous equations
have. 8Since each additional mass and each additional spring increases
the order of the equations, one should avoid mechanical complexity if
rebounding is undesirable.

Low damping, one pair of roots complex.- The complex exponentials
which appear in the case of low damping with one pair of roots complex
may be expressed in real form by exponential and trigonometric functions:

. v -

kK +ky . “Ast
1 —_EIEE— + e (Al cos vt + A2 sin Vt) + A3e 3

¢ (9)

X = W

A3t

- 1 -ut i -
Xy = Wl EE + e (Bl cos Vt + B2 sin vt) f B3e
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The relations between the A's and the B's are here more involved
because equation (8) can be applied only before the trigonometric
functions are introduced. When this is done the following relations
are found: :

By = (1+ a1 )A + BiA,

By = -B1A; + (1 + al)A2

By = (1 N ae)A3
with

ug(kl-bu) - Vg@ﬁ.+ b )

(k1 - b )2 + b2

by(1? + v2) - 2l

Pp=m (kg - on)2 + 02

o
“2 = X o
1 - 3

The boundary conditions will now yield the following set of three
equations for Ay, AQ, and A3:

1,1
Ay + Ay = W +
1 1
3 (kl k2>

|
1
<3

P—Al - VA2 + >\,3A3 =

(n® - Vz)Al - 2uvAy + A3PA5 = =
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When these équatidns have been solved numerically, 3By, Bp,
and B3 may be found from the preceding formulas. Then

X = xi - Xp

W AamiAs® ot .
_ 1 37173 3° Ht <
Sl e e (alAl + BlAQ)e cos VvVt +
1 K 3 |
-ut .
(BlAl - alAz) sin vt (10)

= kX,

Wl + k2E33e')“3t + e'“t(Bl cos vt + Bo sin vtﬂ

In this case rebounding is rather probable because of the trlgonometrlc
terms, and it will be inevitable when W; = O.

Solution Not Neglecting Unsprung Mass

The results just described may be considered representative for the
landing impact if it can be shown that they are not seriously affected
by the neglected mass my of the wheel. This side of the problem will

now be investigated.

Instead of equations (3) set (2) must be used which still contains
the term with mp. Four initial conditions are required: :

t = 0: Xy = 0, Xy = 0, ' ’kl = V{ ke =V
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which now are all independent of each other. When they are introduced
into differential equations (2), there are obtained

t = 0: 3&1 = Wl/ml, 3&2 =0

If equation (2a) is differentiated once more and again everything known
is introduced, another dependent condition is found:

oW
t=0: ¥ =--—
m

For actual use, choose from all these conditions the set of four which
refer to x; only: ' '

t = 0: X =0, X, =V, ¥ = = ‘il‘=-—-2—‘ (11)
The general solution of equations (2) is

kl + k2 -ult

=W, — A t i t) +
Xy 1 Ek + e ( 1 cos Vit + Ay sin vy )

ST -
e 2 (AB cos vyt + Ay sin v2t) (12a)
. Mot
X, = wl %; +e 1 (Bl cos vlt + B2 sin vlt) +

e™2%(B3 cos vot + By, sin vyt) (120)
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Vv are obtained from the real and imaginary parts of the

four solutions

M=oy Tivy

of the frequency equation.

k kq + b k
Ay —:-L—+—l—>b>\,3+ e N2\ - k2x+lk2=o (13)
and the B's depend on the A's by the relations
~
By = (1 + aq)A] + ByAp
By = -ByAy + (1 + o) Ay
> (1k)
By = (1 + aE)A3 + Bohy,
B)_l_ = -B2A3 + (l -+ Q.2)A)+
J
with -
o
un2(kl - bun) - Vn (kl + bun)
(In = ml 5 5 .
(kl - bun) + b2V,
;- (15)
2 2 ‘
bvn(un + vy ) - 2kgu Vo
Bn = my 5 n=1,2
2y 2
(kl g b“n) + b“Vp

el
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The force acting between the tire and the ground is again ' ' -

Fp = kpxp : _ .

and may be computed from equation (12b). It is responsible for the
stresses in the tire, and when it becomes zero the airplane will rebound.
But Fo 1is not equal to the shock-strut force Fy; which in turn is
responsible for the action of this part of the landing gear and for the
dynamic load on the airplane structure. This force must be found from
equation (1b):

Fl = Wl + e_ult{Kbp.l - kl)(alAl + BlAZ) + bVl(BlAl - a’lA.Q] cos Vl't‘-f-
Eovl(a,lAl + ByAp) - (oM - kp)(BaAy - c,lAg):I sin Vit }_+ ,

e‘UEt{]Kbug - kl)(“QAS + PQAA> + bv2(32A3 - GZAMX] cos Vot +

i

| E’Ve(“‘z‘% + BzAh) - (oup - k1) (52A3' - °‘f2Al+)] sin Vot } (17v)

From the formulas shown here it is clear that the final result is
connected with the data of the problem through an algebraic equation of
the fourth degree and through a set of four linear equations. Solutions
must be obtained numerically for a given set of data, so 1t is not pos-
sible to discuss the features of the solution in general terms. To find
out how they look, a series of systematically chosen examples has been
computed which will be discussed in the section "Discussion of Numerical
Results."”

Undamped System

As a basis for this discussion, it is useful to consider the case
when the damping b 1is zero and, additionally, m; >> my. The second

assumption is certainly good but, if used alone, it would not give any
substantial mathematical relief. The first assumption is, of course,
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not very realistic in a landing gear whose essential purpose is.damﬁing,
but the conclusions derived will help in understanding the more realistic
cases.

When b = 0, the frequency equation (equation (13)) loses the

terms with A3 and A and, when it is assumed that m; >> my, the
firset part of the coefficient of A2 may be neglected.

The equation reads then

ky + k
ok tE Lo bk
m2 mlm2

and its solutions are purely imaginary, say

>
]

i-iVl :
and

A

iiv2

When the equation for 22 is solved and everywhere l/ml is neg-
lected against y/me, it follows that

2 htrk Btk
2y 2mp

The upper sign yields A2 = 0 and hence vy =0; the lower sign yields

1+ ks
V2 - m2

This indicates that v; << V,, but evidently too many small terms were

neglected to find a reasonable value for Vv;. It may be obtained from

the fact that the third term in the equation must equal v12v22:“
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kiko
Vl = my k1 + ko

This is indeed much smaller‘than Vo.

Since Wy = ué = 0, solution (12) loses the damping factors e'u#

and becomes:

k| + kp

X = Wl —_EZEE_ + A1 cos Vlt +:A2 sin vlt + A3 cos VEt + Ah sin V2t

Xp = wl Jk + Bl éps vlt + B2 sin vlt + B3 cos yzt + Bh sip V2t _

ko

When this expression for Xy is introduced in initial conditions (ll),
.a very simple set of equations is obtained: :

-~
1- 1

Al + A3 = —wl(l_{i_- + -k-E)

le2 + V2Ah =V
; > (18)
W

V.2 2p, = - X

Vl Al + Vo A3 T

Vi3, + Vp3Ay = 0

J

Tt consists of two independent pairs which will be solved and discussed
separately. .
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From the first and third equations:

R W R S A
1 2 2\my 2 Kk

R

. kl+k2
~ TN
klk2
A = ____E]_l___l_. Qﬁ_-:_kg_
3772 o\mp 1k
VoS - Vg 1 1k2
W m
1 2
ky + ky my

Equations (15) yield B =B = 0 and

and equations (14),

1}

1

=
’-—l
~
S

td
w
i
fe =
w
=
1
|'\><
no
2,3
S—
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The last equation is not very convincing as it stands, since it gives
B3 as a.product of A3, which is almost zero, and of the large

factor m) /mp. But one may check the result by first finding an exact
expression for B3 and then neglecting m, against my.

From the results it is seen that only the low-freguency motion
(Al, Bl) is of importance and that the ratio Xpi Xy is at all times

the same as for the static deflections, uninfluenced by the presénce
of the unsprung mass.

' The second and fourth of equations (18) may be handled in the same
way. The result is this: '

m - 1/2 kl + k2
Ay = V(kl + k2> (klk2)1[2

N my 3/2< my >1/2 Kk,
A S N
m 1/2 1/2
o (5 s) (@)

N III2 1/2 ml )1/2 k2
By = V(ﬁ) (kl TR Ktk

Here again it is seen that for X the.low-frequency motion (Ag)
is by far preponderant, Ah being smaller by a factor (me/ml)3/2;
but for the displacement of the wheel (Bg, Bh) the factor is only ‘
(me/ml)l/g. In the low-frequency motion the ratiq Xpi X is the same
as for the static deflection, but in the high-frequency motion X5 is

much larger than xl’ the wheel moving up and down between the ground
and the almost unmovable airplane mass.
On the whole this analyéis shows that through the presence of an

"unsprung mass" a high-frequency motion is added to the low-frequency
motion of the airplane. This high-frequency motion does not affect X1,
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but it makes a certain contribution to the forces in the shock strut and
in the tire. Since (mg/ml)l/2 is still as small as 0.15, one may

' neglect the presence of the mass mp if the accuracy requirements are

not too high. In view of the many arbitrary assumptions which enter the
analysis (e.g., the value of V), one may think of neglecting m, for

design purposes, but one should keep an eye on it when evaluating tests.
This rule, of course, is derived from the behavior of the undamped shock
strut. How far it is modified by the damping can be seen only from the

gsystematic numerical work which will now be discussed.

‘Discussion of Numerical Results

Dimensionless parameters.- The formulas developed in the preceding
sections have been used to compute some typical examples. In order to
draw maximum information from this work, it has been done in dimension-
less form, and therefore the choice made for the dimensionless quantities
must be discussed before the results may be discussed.

For the displacements Xy and xp and the stroke x a reference

length is needed, and when they are plotted against time a reference
time is needed. Since the deflections start from zero at t = 0 and
approach asymptotically definite values, the static deflections, it
seems reasonable to adopt the static deflection of the mass m; as a
standard of length:

1 1
5 = mlg(k—l- + EQ-)

A simple time standard may be found in the period of the vibrations which
the mass m can make on the springs kl and k2 in the absence of

damping. This period is 2= S/g; drop the factor 2n and choose as

time standard
o Jg . ’ml(kl + k)
e ik

.For the forces F, and F, the load W; might be used as standard;
but, since W, depends on the horizontal speed of the airplane and on

" the angle of attack of its wings, it may have rather different values for
different landing cases of the same airplane. It is therefore better to
use mg &as a reference value.
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Besides these variables there is a set of constants which influence
the impact. They are the masses m; and mp, the spring constants kj

and ks, the damping b of the shock strut, the load W; (weight minus -

1ift), and the vertical velocity V of the airplane. These constants
may be combined to the following dimensionless parameters: mg/ml,

K .
EI—%LEE, bT/my, Wl/mlg, and VT/8. These parameters must be chosen
for each example. '

Influence of unsprung mass.- Of most interest in a study of the

linear spring-damper system is the influence of the unsprung mass on
the impact force. Since this influence is small in the undemped system,

one may hope to find the same result when damping is present. To check
whether this is true, a landing gear has been investigated analytlcally
for two extreme values of the mass parameter, my/my = 0O and

mg/ml 0.050. Values common in current practlce lie approx1mately
halfway between, and the choice has been made in order to make the effects
more clearly visible. TFor the other parameters the following values were

chosen:

kqy

C——— = 0.25 |
K] + Ko - ) .
bT/m) = 0.5
Wl/mlg = 0.2
VI/5 = 2.0

The weight parameter lies halfway between a fully buffered landing'with
Wy = 0 and the usual assumption of Wy = % m;g. The other three figures
are so chosen that they correspond to an actual airplane, at least so

far as a correspondence between a linear and a real shock strut is
possible. ‘ . : :

The result of the computations is seen in figure 3(a) which shows the
shock-strut force F, against time t. At the start there is a definite .

difference: The unsprung mass absorbs the first 1mpact and the shock-
strut force develops slowly; a slight overshoot follows; and then the

’,
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curves are practically parallel, the distance between them’ correspondlng
to the addition of the wheel mass m, to the total mass + m, which

must be decelerated.

This result confirms the view that the maximum of the shock-strut
force is not much influenced by the unsprung mass and that one may
safely assume mo = O when this leads to a simplification of the
theoretical or numerical work. However, this simplification may not be
admissible when the wheel spin-up must be considered. Figure 3(b) shows
the force Fp between the wheel and the ground, and here it appears

that in the early stage there is a considerable difference between the
two cases such that F, and hence the drag load will increase with the

unsprung mass.

Influence of damping.- High damping in the shock strut is desirable
since it dissipates the kinetic energy of the airplane and thus prevents
repeated rebounding. The influence of damping on the landing impact may
be seen in figure 4. Here the force F, on the wheel and the stroke x
of the shock strut are plotted against time for the following set of
parameters:

my/my = 0.025
k
1
— = 0.25
ky + ky
Wl/mlg = 0.2
VI/8 =

and bT/ml 0.5 and 1.0. In the initial stage there is not much dif-

ference between the two curves {fig. 4(a)), since the impact is caught
by the tire, but then the rise of Fo 1is much faster for the case of

higher damping; the maximum is reached more quickly but it is only

T percent higher than that for the case with half as much damping. The
development of the stroke (fig. 4(b)) is on the whole similar in both
cases, but the maximum is lower for high damping. The figures show
that, apart from its influence on rebounding (which occurs much later),
high damping has its pros and cons and that they must be balanced in
each design.
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Influence of springbconstants.- In another example the influence of
the spring constants kq and ko is compared. The forces Fl and - Fp

have been computed for

. mg/ml = 0.025

bT/ml = 0-5
Wl/mlg = 0.2
YT/8 = 2.0
kq .
and for ———— = 0.15 &nd 0.25.
kl + k2 .

The standards of length and time, & and T, will not be changed
if the sum of the reciprocals l/kl + l/k2 is kept constant, and under

this condition an increase of the parameter kl/(kl + kQ) simply means

that the shock strut is made stiffer and the tire softer. Consequently,

a greater part of the total deformation will take place in the tire, and
since there is no damping the impact force will build up more slowly. ~
This is clearly seen in figures 5(a) and 5(b), which show that the
influence is the strongest on Fp. Of course, the smaller the impact
force, the less the airplane will be decelerated and the higher the force
must rise at a later stage to bring the vertical motion to a stop. This
is also seen in the diagrams, and in figure 5(c) one sees the conseguences
for the displacement x3 of the airplane and the deformation x, of

the tire.

Influence of weight and 1ift.- Remember that the notation Wy

represents the resultant static load on the landing gear, essentially
the difference of the weight of the airplane and the wing lift. 1In the
landing-gear literature one finds discussions of the whole gamut of
possibilities from the buffered landing with Wy = 0 "to the pancake

landing W; = m§g. The present American regulations consider
W/mg = 0.333 as a standard assumption. The cases where Wp/mg =0

and 0.2 have been computed, assuming
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mp/m) = 0

- kl

— L _o0.25
ky + ky

bT/my = 0.5

VI/3 = 2.0

The corresponding forces F, = F; are shown in figure 6, and one

recognizes that the difference is not very pronounced. This is easily
understood when one considers the maximum displacement x; of the air-
plane mass. It is 1.658 in the first case and .1.828 1in the second,
while the final static deflections will be O and 0.25, respectively.

It is therefore essentially the kinetic energy of the airplane mass and
not the weight that is responsible for the impact. :

A1l the examples given here show the general trend of changes which
a change of one of the parameters will induce. In the details much will
be different when real shock struts with their essemtial nonlinearity
are considered. » .

Taxying

When an airplane taxies on the ground, its tires and the shock
gtruts have the same functions as the tires and springs of an automobile.
Whether they will be subject to serious dynamic forces depends on the
smoothness of the ground. 1In the investigation of the taxying impact
it has become customary to assume that the airplane rolls st moderate
speed over a bump shaped after a sine curve. On a turf-covered airfield
such a bump may represent a frozen molehill or a similar obstacle, but
on a well-kept concrete runway it is difficult to discover an obstacle
of this kind from which the length and height of the bump might be
taken, and the same is true for the deck of an aircraft carrier.

It is preferred therefore to assume as a standard obstacle a step
. in the ground, as it is encountered in the joints between the runway
slabs or if a wheel should get over the edge of the pavement (fig. 7).
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For the mathematical formulation of the problem it is assumed that Lo
the airplane is taxying on the left part of the pavement and that the
landing gear has the static deflection:

k1 + kp

X: =W
17 W
Kk ky

1
X = Wq —

Since taxying is done at low speed, Wy 1in these formulas comes close
to the total weight mg to be carried by one shock strut.

At t = 0 the wheel hits the step in the pavement, and for t > 0
the term kox, 1in equation (2b), which represents the force in the tire,

must be replaced by k2(x2 + h). The equilibrium is then disturbed, and it
is desired to know the resulting vibration. It will be found by solving
the differential equations '

m¥) + (k) - %p) + Ky (xg - xp) =Wy (19a)
mp¥p - b(ky - ) - Ky(xy - xp) +kpxp = -koh - (a9)

. \.
for the following set of initial conditions:

kl + k2_

l . L]
t = 0: X, =W, ——— Xn = Wq — ’ Xy = X =0
1 1 kiky 2 lke’ 1 2

It will again be useful to write all initial conditions in terms of one
variable. Since it will be seen that in the present case Xo 1s more

important than X715, Xop 1s chosen to formulate the conditions. The

procedure is almost the same as that described in the section "Solution -
Not Neglecting Unsprung Mass," and the result is this:

1 . . kph ;. DPkph
t = 0: Xn = Wq — X = 0 Xp = - —— Xp = —— (20)
2 1 kE, 2 ’ : 2 m2 ’ m22
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BpBy + (1 + ay)By

(1 + al)2 + 512

=g
no
i

o - (1 + ap)By - BBy
(1 + a2)2 + 52

B§% +(l-+a@Bu
(l + agbg + 322

A4 =

Now x; and xo and their derivatives may be calculated as functions

of time and from them, the stroke x = X, - X5, the force on the wheel
Ff)=

5 ke(x2 + h), and the force in the shock strut

Fl = Wl - myXy

-1t
W1 - mye M [K“lg - v12>A1 - Eulleé] cos Vlt +
[alllel + (“12 - V12>A2] sin Vlt -
-Aat
m)e 2 l:(“22 - v22) A3 - E‘HQV?‘\L] cos vgt +

E%2v2A3 + (u22 - v22>Aé] sin v2t

An example may illustrate the mechanical content of these formulas.
following set of dimensionless data is chosen:
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mQ/ml = 0.025

K
1 -0.15

kl + k2
bT/m; = 0.5

Wy/meg =1

n/s = 0.1

After solving frequency equation (13) one may find Bl to Bh from
set (22):

By = 0.0137%
B, = 0.011%
By = o.08635
By, = 0.0617%

The precision of Bo is rather poor, but it is not possible to obtain
a more accurate value unless the data of the problem are given with such
accuracy that a computation with more than slide-rule accuracy would be
Justified. However, 32 is multiplied in equation (21b) with a factor

which increases rather slowly with +t, and the term does not reach an
important magnitude before the essential phase of the impact is passed.
The displacement xp of the wheel is shown by the solid line in figure 8.

The displacement x; of the airplane has not been plotted because it is
almost constant, and only after a considerably longer lapse of time does
the airplane climb slowly to the new level given by the step in the
runwvay.
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The forces Fl in the shock strut and F, 1in the tire are
represented by the solid lines in figure 9. The force Fp, jumps
instantaneously from its static value F, = W; to 1.67wl, the rise
being determined by the height h of the step and by the stiffness ky
of the tire. Actually this sudden increase of F, is smoothened by
local deformation of the tire. The force F; which through the shock

strut acts on the airplane structure rises smoothly to a maximum and
then returns in damped oscillations to its static value Wi. In the

present example the essential part of the impact is passed at t = 0.15T.

The fact that the mass my hardly moves within that time which is
of interest suggests simplifying the computations by putting m = .

When this is done, equation (19a) must be dropped entirely (it simply
yields x7 = 0) and in equation (19b) there must be put

e —poy At
1 1 Kk

x) = 0

The problem is then reduced from the fourth to the second order and ite
solution is

== - —5 ___ 4+ e t(Bl-cos Vt + Bo sin V@

with

| v =‘-2—%2—\/1;(k1 + };2)1112 - b°

Of the initial conditions (equations (20)) only the first two remain
valid, and from them
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With these formulas it is rather easy to compute the deflection Xo
and the forces ‘

Fq = kl(xl - x2> + b(:’cl - xe)

k) + ky

= wl __.1.{.2__ - klx2 - bx2

k koh
_ 12 Ht _ _
- Ble buB, + bVBp) cos Vt +

(k1B, - VB, - BuBp) sin vﬂ

Fpo = kpxp

However, there is still a difficulty in the dimensionless representation
of the results. When ml is put equal to =, the guantity which was

used as a reference basis for ’mg, bT,'and "W; seems to be lost. But

this difficulty is only apparent. When m; 1is set equal to « in an
equation, this does not mean that the mass really is infinite but only
that the inertia is intentionally overrated. Nevertheless, there is a
certain weight mjg to which the load (weight minus 1ift) W, and the

wveight mpg of the wheel may be referred and which will produce a
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certain static deflection 8. To this deflection the height h of the : .
step is referred, and the damping b is handled by writing

T _ b
ml_ml S/g

_ll_‘ls

With this interpretation of the dimensionless quantities, the
results of the simplified theory may be plotted in the same dlagrams
which were used before. They are represented by the broken lines in
figures 8 and 9. ‘

~

These curves show the following features: (1) In the domain of
interest they are so close to the exact curves that they can hardly be
distinguished. (2) For large values of t they have different
asymptotes. This is easily explained. When X, = Constant, the springs

will find themselves at last more compressed than they were before the
impact. The wheel can therefore not rise by the full height h of the
step, and the forces F; = F, will be higher than Wj. However, this : ;

deviation between the two solutions is of no practical importance, not
so much because of its small magnitude but because of its late occurrence.

It is of some interest to study the extreme case that_vml = ®
and my = 0. Since the mass mp is responsible for the difference
between the forces F; and Fp, it is seen from a glance at figure 9
that this simplification of the problem goes too far to yield results
of immediate practical value. The formulas therefore will not be

reproduced, but some points computed from them have been entered in the
force diagram (fig. 9). This line of dots which represent both Fj

and Fp shows approximately how the solution will be changed if the
unsprung mass my 1is substantially decreased: ' The sudden rise of ¥,
is the same, but the following decrease is faster. The force F; rises

more rapidly (in the limiting case has the same discontinuous increase
as Fo), and its maximum will be higher the more my is decreased. This

shows that in taxying it is not advantageous to have the unsprung mass
too small. '




5C

NACA TN 2743 | 33

INTENTIONAL NONLINEARITIES

The kind of shock strut considered in the section "Linear Spring-
Damper Systems" 1s the only one which leads to linear differential
equations. The spring terms in these equations correspond to the action
of helical or other steel springs, and such springs were used to some
extent in early shock struts. Modern shock struts use air as an elastic
material, and air does not show linear elasticity unless there is time
enough to dissipate the heat generated by compression. However, the
nonlinearity introduced by a pneumatic spring is not severe, even in
the extreme case of adiabatic compression.

. Quite different is the situation with the damping term in equa-
tion (1b). Viscous damping is never realized in shock struts, their
damping being produced by the acceleration of oil squeezed through
narrow orifices or slots. If the cross section of the orifice does not
vary, one has a velocity-square damping, and this already presents an
essential nonlinearity. But more than'this, the necessity of making
the best use of the structural weight of the landing gear has led to
the introduction of a metering pin which changes the width of the
orifice in such a way as to make the impact force increase quickly to
its peak value and then stay at this value for a considerable time.

The nonlinedrity which the metering pin introduces into the differential
equations ig intentional and essential, and one has to study the equa-
tions of motion with the corresponding damping term. This will be done
in this part of the report and, since there is no additional difficulty
comnected with it, the nonlinear elasticity of the air spring will also
be included.

Differential Equation of Oleo Strut

Oleo struts are built in different forms (fig. 10). They all have
this in common: A piston moves in a cylinder, and there are two chambers,
separated by a diaphragm and connected by an orifice. The lower chamber
is filled with oil; the upper one, partly with oil and partly with air.
When the strut is compressed, oil must flow from the lower to the upper
chamber, and there may or may not be a metering pin which fills part of
the orifice and makes the remaining gap depend on the position of the
piston. :

The pressure p; in the upper chamber depends only on the air :

volume and hence on the position of the piston. The pressure pp in
the lower chamber is greater by the pressure which is needed to squeeze
0il through the orifice. The difference is proportional to the square
of the piston velocity and thus produces a damping of the shock-strut
motion.
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~
The relation between the force Fl transmitted through the shock

strut, the stroke x, and the rate of stroke x will now be established.
In addition to the notations explained in figures 10(a) and 10(b), the
following symbols for the different cross-sectional areas are used:

Ao inner cross section of barrel at oil level
A total cross section of piston
Ay inner cross section of piston in figure 10(b)

When the strut is fully expanded and at rest, there will be a
certain pressure "Pp in both chambers and a force up to the limit

Fo = Pofy

may be applied without displacing the piston.

When the piston is displaced, the content of the chambers is
decreased by xAq and, since the oil is incompressible, the air volume

must decrease by this amount:
XAy = (zg - 2)A,

The collapse of a shock strut under the landing impact takes less
than 1 second, and one might think that this time would be too short to
allow for much heat transfer. Then the compression of the air would
follow the adiabatic law

with 7 = 1.4k, There is, however, a very efficient cooling of the air

through the jet of cool oil which is shot vigorously through the orifice

and scattered on the cylinder walls. It may therefore be justified to

assume & much lower value for the exponent, say 7 = 1.1 or even

isothermal compression with 7 = 1. To decide this point, temperature -
measurements in the air chamber would be needed. '
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Elimination of 2z from the last two equations yields the following
expression for the pressure in the upper chanber:

z A /A Y :
P, = Po<———° o/ > (23)

Zoho/A1 - X

When the piston is displaced, the volume of the lower chamber is
decreased and oil must flow through the orifice into the upper chamber.
In the case of figure 10(a) the rate of the oil flow is Aj;%; in the

case of figure 10(b) it is Aox, and the oil velocity in the orifice is

_AgX
v = ———A3
or
L
A3

Here Ag represents essentialiy the area of the gap between the

metering pin and the edge of the orifice, inclusive of an orifice
coefficient, if necessary. This gap area depends in a known way on
the stroke x. But A3 includes also any other leakage between the

two chambers, and such additional gaps may depend on elastic deforma-
tions and hence on the pressure Py. Complications are avoided by

disregarding this fact and assuming that A3 is known or sufficiently
estimated as a function of x alone.

| The oil is accelerated to the velocity v by the difference
between the pressures Ps and Py in the two chanmbers according to

Bernoulli's equation

where p is the density (mass per unit volume) of the oil. Taking the .
last two equations together, a relation is obtained between the pres-
sures and X:
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3
A2
pg_pl_ 2X ~
2A3
or v - > (2k)
pA22' 5
p2—pl=——é-x
o/

respectively, for figures 10(a) and 10(b).

"In this form, the relation holds only for the upward stroke.
During the recoil motion of the piston the oil moves in the opposite
direction through the orifice and the pressure in the upper chamber is
the higher one. To cover this motion, one must at least write Py - Pp

instead of p2 - p; in equations (24). However, even this will not

really describe the recoil motion, for the following reason: The oil

Jjet which is shot in the upper chamber during the upstroke is so

vigorous that air and oil get thoroughly mixed, and this foam is squeezed ) .
back during the downstroke. It is therefore scarcely possible to calcu-

late the details of the downstroke until experimental information becomes
available concerning the degree of mixing and the density p which should

be used in equations (24) for this phase of the motion.

In figure 10(a) the force acting downward on the piston is simply

F1 = MPpp

Bypy + Ay (Pp - Py)

In figure 10(b) part of the piston protrudes into the upper chamber
and is there exposed to the pressure Py The total force is therefore

in this case

Fy = (AL - Ay)Pp + Agpp o

Bypy + An(pp - By
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With equations (23) and (24) this yields for figure 10(b):

zéAo A1 Y eA 3 .
S ALY N N

(25)
zZoAo /Ay - X 2A32

and for figure 10{a) the relation is the same except that Ao must be

' put equal to Aj. Equation (25) is the equation of the oleo-pneumatic
shock strut. o

For obvious reasons real shock struts differ from the idealized
figures 10(a) and 10(b) in that the upper end of the piston is so
shaped that it touches the wall of the barrel. In this way a separate
annular space is created between the plunger piston and the wall of
the barrel which is usually connected by good-sized holes with the
upper chamber. The oil flow through these holes may add some damping.
It ie easily possible to take care of this effect by a correction of
the factor of the second term in equation (25).

Dynamic Equations for Landing Impact

For this study it will be assumed that the force in the tire
follows a linear law:

Fo = koxp

but that the force F, in the shock strut depends nonlinearly on the
stroke x and on the rate of stroke x:

the function F, being given by equation (25).

The equations of motion are essentially the same as equations (2)
except that the terms :

b(:’cl - 5:2) + kl(xl - x2> = bx + kix
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must be replaced by Fl(k, x). The equations are therefore these:

myX; + Fi(x, x) = Wy (26a)

moXp - Fp(%, x) + kyxp = 0 (26b)

Since these equations contain three unknown variables, a third eduatiOn
is needed, the relation

X =X - Xy . - (26¢)

The initial conditions for these equations will be different from
those used with equations (2). Because of the prestressing of the oleo
strut there will be a short but finite time at the beginning of the
impact when the piston does not move and the total of the deflection
comes from the tire. During this interval the motion is governed by

the differential equation
(ml + m2) Xy + koXo = Wy

and to it the initial conditions

t = 0: ‘X, = 0, ig =V
must be applied. The solution is

Wl v
x: = x, = =—(1 - cos wt) + < sin wt
1= % ® -




NACA TN 2743 . 39
It is valid up to the time t = to when for the first time

the prestress force of the shock strut. From

! v
=(1 - cos wty) + = 8in wto = Fo

ko

one finds to and then

! L
Xo = Eg(l - cos wtg) + 5 8in wtg

W.w

Vo = 7@; sin wty + V cos wt,

the displacement and velocity at the end of the initial interval. With
these quantities the initial conditions for equations (26) may now be

written. They are
S

X) = Xo = X5

}'(l ).(2 = VO

J

These conditions ought to be imposed at t = to. For the numerical
solution it is more convenient to start a new time scale in which
equations (27) are to be satisfied at t = 0. When plotting the results,
one should of course convert the time so that the zero is at the moment
of first contact.

Equations (26a) to (26¢) with boundary conditions (27) must be
solved by a step-by-step integration. As is well-known, thie is done
in the following way: At a certain time t, the differential equations
are used to compute the numerical value of the highest derivative of
each unknown; then one of various integration methods is used to find
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values of the unknowns themselves for the time +t + At. The choice of -
the integration method determines the exactness of the result and the -
amount of computation work needed. This point will be discussed in

the next section.

The other part of the process, the computation of X, and X5,
is done in table 1.

TABLE 1

(V[ |G| |G| ] (8) (9) | (x0) | (11) |(12)

t |x; kl X5 ig x x Fl(x, x) | koxo %2 Wy - Fy il

Tn the first line of this table, columns (2) to (5) are filled
from the initial conditions. Then columns (6) and (7) are filled with
the help of equation (26c) and columns (8) to (10) and (11) and (12), .
with the help of equations (26b) and (26a). The integration process
will then yield values for the second line of columns (2) to (5), and
then the whole procedure may be repeated.

Simplified Equations, Neglecting Unsprung Mass

As has been seen before; the unsprung mass does not essentially
influence the load-stroke curve. It is therefore of interest to
reconsider equations (26a) to (26c) after dropping the term with m5:

mlil = Wl - Fl . v (288.)
Fi(k, x) = kyxy (28b)
X=X - X5~ (28c) "

As seen already in the linear case, neglecting the unsprung'mass decreases
the order of the problem by one and the initial condition for ig must

be dropped. :
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- Equations (28) may be handled numerically with the help of table 2,
combined with a table for the numerical integrations.

TABLE 2 ‘

(1) [ (2 [ 3 [ ) 1) [®) | (@] (9 (10)

Here in the first line columns (2) to (4) are filled from the initial
conditions and the other columns, with the help of equations (28c),
(28b), and (28a). The first step of the numerical integration serves
to get the second line started, and so forth.

Methods of Numerical Integration

There exists much literature on the subject of numerical integra-
tions and it does not seem necessary to develop here new methods or to
describe the old ones in detail. But it appears to be useful to
recommend methods which have sufficient accuracy without being too
laborious, to explain their background, and to present the necessary
working formulas in a notation adapted to the present purposes. This
will be done here, and for further details the reader is referred to
the literature.

The functions which have to be integrated with respect to time
are Xy, X1, X, and, if my is not neglected, §2.

Let § be any one of them and assume that, for a certain time
t =th, ¥y, and Yn are known. A first approximation may then be

found for the value y, 1] of y at t =ty + At by assuming that
¥ = ¥n 1s constant throughout the time interval:

Yp+1 = ¥n * Yn Ot (29)

lSee, e.g., Scarborough, James B.: Numerical Mathematical Analysis.
The Johns Hopkins Press (Baltimore), 1930, p. 227; second ed., 1950,
p. 24k,
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‘When this value yp+1 (in this case values of xj, x1, and xo) is
introduced in the differential equations, yp4; 18 found, and now the
integration may be improved by using the average of &n and &n+l:

1/ .
Ips1 = n * E(yn + yn+l) At (30)

In figure 11 the first formula uses the shaded rectangle as increment Ay
and the second formula uses the shaded trapezoid, but this result is still
not final, because with the improved Yyp41 the differential equation will

yield another and better value for &n+l which now should be used for the
average. The procedure must be repeated until y,,; and &n+l no longer -

change. When the time step At is well-chosen, this should occur after
the first or second repetition. : :

An example is shown in tables 3 and 4. Table 3 is identical with
table 2 and corresponds to the simplified analysis with mp = 0. In
table 4 there are several consecutive lines for each time 1t, each of
them resulting from one complete cycle of iteration. One sees that Xx;
and x; are practically settled after the first cycle and that xo

required most of the effort. The computation may be speeded up 1if
proper advantage is taken of this situation. One begins the second line
of table 4 with the last three columns. With xo = 1.287 inches and
equations (28b) and (28a) the columns Fy, Wy - Fy, and ¥p of the
second line of table 3 may be filled. It is then possible to enter

ﬁl = =155.2 inches per second squared in the second line of table 4 and to
perform the two integrations leading to il and x; at once with the

trapezoid formula, equation (30). The values so obtained for il and

Xy will be close to the final ones, and one may now run as mary cycles
as necessary in the xp integration and finally check kl- and Xy

again. Great care should be taken that the next step is not started
before a perfect result has been obtained, because otherwise avoidable
errors would accumulate from step to step in the integration.
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TABLE 3
(1) (2) (3) () (5) (6) (N (8) (9) (10)
t x x X5 x Fy % x, Wy - Fy %
(sec) | (in.) [ (in./sec) | (in.) | (in.) (1) (in./sec) | (in./sec) (1v) (in./sec?)
0 0.988 119.5 0.988 | o 12,350 0 119.5 -12,350 -119.2
.0025 | 1.286 119.2 1.287 | o 16,090 15.0 10k.2 -16,090 -155.2
.0025 | 1.286 119.2 1.268 .018 | 15,850 1k.2 105.0 -15,850 -153.0
.0050 | 1.583 118.8 1.530 .053 | 19,120 18.6 100.2 -19,120 -184.7
.0050 | 1.583 1n8.7 1.524 .059 | 19,060 18.% 100.3 -19,060 -184.0
.0075 | 1.879 118.3 1.775 .104 | 22,200 20.5 97.8 -22,200 -21k.2
.0075 | 1.879 118.2 1.772 .107 | 22,170 20.3 97.9 -22,170 -214.0
.0100 | 2.17% 117.7 2.017 157 | 25,200 21.3 96.4 -25,200 -243. 4
.0100 | 2.174 117.7 2,015 .159 | 25,200 21.3 96.4 -25,200 -243.4
TABLE L
(1) (2) (3) (¥ (5) (6) (7) (8) (9)
¢ %1 Bk % oxy Xy %5 Xp
(sec) (in./sec?) (1n./sec) (1n./sec) (in.) (in.) (in./sec) (in.) (in.)
0 -119.2 119.5 0.988 119.5 0.988
-0.298 0.298 0.299
.0025 -155.2 119.20 1.286 10k.2 1.287
-.343 .298 .280
.0025 -153.0 119.16 1.286 105.0 1.268
-.34% .298 .280
.0025 119.16 1.286 1.268
~.382 .297 262
.0050 -184.7 118.78 1.583 100.2 1.530
-.4o2 .297 256
.0050 -184.0 118.74 1.583 100.3 1.5024
-.h21 ) .297 .256
.0050 118.7% 1.583 1.524
-.L460 .296 .251
0075 -21k.2 118.28 1.879 97.8 1.775
-.ho8 .296 248
L0075 -21k4.0 118.2k4 1.879 97.9 1.772
-.498 .296 .248
.0075 118.24 1.879 1.772
-.535 .295 .25
.0100 -243.4 117.70 2.174 96.4 2.017
: -.572 . .295 243
,0100 117.67 2,174 2.015
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In practical computation work it is more convenient not to write
all the lines shown in tables 3 and I but to erase each figure as soon
as it can be replaced by a better one. All that is then left of table 4
is shown in table %(a). As one may see, this table has the great advan-
tage that the figures needed for averaging always stand close together.

| TABLE 1(a) |
(1) (2) (3) (4) (5) | (6) (7) (8) | (9)
(sec) l(in./sec?)|(in./sec)|(in./sec)|(in.){(in.) {(in./sec) (in.)|(in.)
D -119.2 : 119.5 0.988| 119.5 0.988
-0.34%0 0.298 10.280
.0025 -153.0 119.16 1.286| 105.0 1.268
- 421 .297 - .256
.0050f -18%.0 118.74 1.583| 100.3 1.524
, -.498 .296 .248
.0075| -21k.0 118.24 11.879 97.9 1.772
-.572 ~ .295 243
.0100] -243.4 , 117.67 2.174 96.4 4 2.015

The procedure may be accelerated considerably if at the start of a
new step a good guess is made for the new increment instead of first
computing a poor approximation with equation (29). If this is done and
if the step At 1is chosen small enough, the method works rapidly and
nevertheless develops good accuracy.

Most of the criticism which this method has received in the litera-
ture applies only to its use in problems which require a much higher
accuracy than does. the landing-impact problem. In this case slide-rule
accuracy will always be sufficient, and this can be obtained by the
trapezoid integration without resorting to painfully small steps.

However, the method has the disadvantage that one never knows exactly
how large the error is. This drawback will be avoided if the straight ‘
line in figure 11 is replaced by an interpolation parabola. This may be
done as soon as four or five successive values of y have been determined.
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Through five consecutive points (fig. 12) a parabola of the fourth degree
may be fitted, and the coefficients of the corresponding polynomial in
t may be written in terms of the ordinates y,.), Yp-32 * * - &n or,

better, in terms of yn and of a set of differences of increasing order
AMYn = V¥pn = Yn-1
Doy = D¥n - M¥paa

and so forth which may be computed in the following scheme:

t vy | &Y DY Agy Ny

*n-3 | Yn-3 [ 419n-3
tn-2 | Yn-2 | AYp-p |PoVn-2
tn-1 [ Yn-1 [21Yn-1 [2o¥n-1 | B39n-1

tn &n Ai&n DoYy AB&H Ay

The polynomial may then be integrated over any one of the intervals At
and in this way improved values for the increments Ay may be obtained.
They are computed from the following formulas:

&Yn =¥n - Yn-1

. 1. 1 = 1 . 19 :
At(yn -5 Alyn - 15 Doy = 5 A3yn - 750 Ahyn . . ) (31a)

&Yp-1 = Vn-1 - ¥n-2

. 3 . . 1 . 11 :
8t(7n - 5 Lo *+ B So¥n + g% An * 755 AWn - - ) o
Ayn-Q = Yn-2 - In-3

. 5 . 23 . 3 . 1 .
At(yn - 2 Sdn + 22 fgiy - 5 A% - 7a5 Mg - - - ) (31e)
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From these Ay's improved values of the y's are obtained. When
they are introduced in the differential equations, better values of the
derivatives will be found, and this procedure must be repeated until
the results become stationary. This should occur after two or three
cycles. If it takes longer this indicates that the time step At was
chosen too long, and one should at once make a new start with shorter
intervals. On the other hand, if the final values are hit at the first
stroke, this generally indicates that the time step was chosen too short,
and one should start again with a greater At or continue until eight
lines are completed and then double the step by dropping every other one.

When this polynomial method is applied to the landing-gear problem,
columns (1) to (6) of table 4 must be replaced by table 5, and the columns

TABLE 5

(D) (2)[(3) | (W) [(5) [(6) | (7)((8)[(9) |(10)|(11)[(12)](13)](1k)

Xqp | 8 Xq | DXy AR Ay Xq | AX) | X [ A X | DpXq |AgXy (L) Xq | AX] | X)

referring to x, by a similar table or an abridged version, depending

on whether equations (26) or (28) are used. The results of the trapezoid
integration are introduced into column (2), differences in columns (3)

to (6) are computed, and then column (7) is filled with the help of
equations (31), identifying y with *1‘ From the increments in

column (7) values of X, in column (8) may be found which are already

better than those of the trapezoid integration. They may at once be
used for computing the differences in columns (9) to (12), the increments
Axyy and the values Xx;, again using equations (31).

When this is done with the figures of table 4, it is found that
neither the x;'s nor the x;'s are capable of improvement, but xp
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is changed appreciably. The final state of the integration for xo

b7

is

shown in table 6. Practically all the correction is due to the first

time interval.

TABLE 6

(1) (2) (3) (k) (5) (6) (7) (8)

t X . . . : Ax X

2 MX X AsX X 2 2
(sec) | (in./sec) ol fo¥e 32 | e "(in.) | (in.)
0 119.5 0.988
.0025 105.2 -14.3 0.277 | 1.265
.0050 100.5 L7 9.6 256 | 1.521
L0075 97.9 -2.6 2.1 | -7.5 .248 1.769
.0100 96.5 1.4 1.2 -.9 6.6 .eﬁé 2.011

When this polynomial method is applied - and the example demonstrates
that it may be worth while to do so - then it will be reasonable to use
it not only for checking and correcting but also for integrating ahead.
To do this, one must extrapolate the polynomia} in figure 12 beyond t,

through the next interval and then integrate y from th

The result may be‘expressed by the set of differences used before:

ANn+l = Ypi1 ~ In

. l . ;z . 3 .
At(?n + 5 Aiyn + 75 Aéyn + g A3yn +

251

720

Mg -

(32)
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With the help of this formula one might find in table 5 the values
of Ail, ,il’ Axy, and x; in the next line. But actually it is neces-

sary to use equation (32) only once, preferably for integrating §2
(or ie, if my, = 0), and then approximate values for the other deriva-

tives may be procured in time to do all other integrations at once with
equation (3la) which is more exact and less influenced by the higher

differences. -

When thus a new line in all tables (table 1 or 2 and the integra-
tion tables) has been filled, equation (31a) is used repeatedly to
improve X5 and X, as long as they are capable of improvement.

As soon as the columns for the derivatives (columns (2) and (8)
in table 5) fill up, one might extend the difference scheme toward
differences of higher order, but the farther one goes to the right, the
smaller and the more erratic the differences will become and they will
not be able to influence the increments computed from equations (31)
and (32). In general the time step At should be chosen such that the
fourth-order difference may be neglected.

Except for the start of the computation which is always a little
irregular, the higher differences should be rather small before they
become erratic; otherwise one must either increase the accuracy of the
derivatives by carrying more digits or decrease the step At. If it is
intended to carry more significant figures, one should keep in mind that
a many-digit machine computation is a wasted effort, if somewhere in the
process a figure must be read from a graph, for\example, the effective
orifice area A3 as a function of the stroke x.

In order to check the accuracy of the two methods - trapezoid and
polynomial - an example of a linear shock strut has been computed with

the following data:

m; = 103.6 1b sec?/in.
m2=0

b = 500 1b sec/in.

k; = 2800 1b/in. ' -
k, = 12,500 1b/in. - .
W=0 ' )

V = 120 in./sec
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The results for this example can be compared with the exact solution,
equations (9) and (10). The following values were obtained for the
impact force Fl:

~

Fy
(1v)
t :
(sec) At = 0.01 sec At = 0.02 sec
Exact : : '
Trapezoid Polynomial Trapezoid
0.0k 38.1 x 103 38.13 x 103 38.03 x 103 38,&7’x 103
.08 | 52.0 52.i 52.0 52.3
.12 56.2 56.2 56.2 56.4
.16 55.7 | 55.8 55.7 55.8
.20 52.5 52.6 52.6 ; 52.6
24 7.6 7.6

Evidently, under these conditions the trapezoid method with

At = 0.01 second is good enough. Encouraged by this result, the

step At has been doubled. The results of the trapezoid integration
are shown in the table. The polynomial method proved to be extremely
tedious and was not pursued further when after several hours of computa-
tion the first four lines had not yet stabilized. Hewever, it was found
practical to start with the small interval and double the step as soon

~as possible. The polynomial method with At = 0.0l second was carried

to t = 0.08 second, and then the results for t = 0.02, 0.0k, 0.06, and
0.08 second were used to start the polynomial method with the double
interval.  This computation was carried up to t = 0.20 second and
yielded results identical with those obtained for the shorter steps.

Numerical Example
As an illustration of the methods just described an example has

been worked out. The data chosen and the metering pin correspond closely
to those of a recent American airplane. The data are these:

A = A, = 39.8 sqg in.
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A zZ

0”0
= 23.5 in.
Ay

p, = 310 1b/sq in.

p = 8.42 x 16-5 1b secg/in.4

y = 1.1
k, = 12,500 1b/in.
Wl=0

V = 10 f£t/sec

The effective orifice area is shown by the heavy line in figure 13
as a function of the stroke =x. The low part at the left-hand side of
the diagram represents the bulbous end of the metering pin.

The shock strut is prestressed with the force

Fo = Pohs = 12,350 1b

Until the impact force has reached this value, only the tire is deformed
and the simple formulas mentioned after equations (26) apply. They
yield 1o = 0.0088 second, Xy = 0.988 inch, and Vg -="119.5 inches per
second. These are the initial conditions for the numerical integration
of equations (25) and (28). This integration was started by the
trapezoid method, using equations (29) and (30), and the time step At
was so chosen that at least a few intervals would pass before the first
break in the curve A3 = AB(X) was reached. This is possible with

At = 0.0025 second, and the first lines of this computation are shown

in tables 3 and 4 (where t is counted from the beginning of this integra-
tion, not from the first contact between tire and runway). When four

steps were completed, the polynomial method was started and the results

of these steps were improved. The computation was carried on to

t = 0.0250 second with x = 0.571 inch, x; = 3.907 inches, and

Xp = 3.336 inches. This is sufficiently far past the first break in

’
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A3(x) that it was possible to double the step. A new integration table

was started with the results for t = 0.010, 0.015, 0.020, and 0.025 second
and it was carried on with At = 0.005 second until +t = 0.060 second with
x = 1.939 inches. The next step would have led beyond the second break

in the curve A3(x) and hence to large values in the difference schemes.

Therefore, it was necessary to return to the shorter time step
At = 0.0025 second. This makes it necessary to interpolate values for
the half intervals. To keep up with the accuracy of the integration,
this must be done with the help of the same interpolation parabolas from
which equations (31) and (32) are derived. With the notations used the
following formula holds:

}.’ 1=
n+-2-

hel oy

(. * Fa) - oatun + Soinez) * 2e{inee * i) (9

in which the last term is often negligibly small.

With the help of this formula a new integration table was started,
beginning with t = 0.0450, 0.0475, . . . second. When it came to
t = 0.0775 second, the next and last break in the A3 diagram was

reached and the higher differences rose so high that it became necessary
to reduce the step to 0.00125 second. Eight lines beyond the discon-
tinuity the step was increased to At = 0.0025 second and soon thereafter
to 0.005 second. At t = 0.1h4 second it was realized that the higher
differences had become so small that the interval could again be doubled,
and with At = 0.0l second the computation was carried until

t = 0.27 second, when X became negative.

The example which was chosen here as a test specimen for the
numerical integration is one of the most irregular possible. Most of
the computation effort was spent on the bulbous end of the metering pin.
As soon as the last corner in figure 13 was passed, the work proceeded
rather quickly to its end. When the pin is shaped more gently, or when
there is no pin at all, it will be possible to start, say, with
At = 0.005 second and to change after some time to At = 0.0l second,
without the many tedious changes which were necessary in the present case.

The results of the computation are shown in figures 14 and 15. There
is a double time scale in the diagrams, one beginning at the first contact
and one at the time t, when the numerical integration begins. '

Figure 14 shows the stroke x and the displacemeht x7 of the
airplane. There is a first, short phase during which only the tire is
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deformed and x = 0. Then the shock strut begins to work but, because ’ -
of the bulbous end of the metering pin, the strut collapses, at first
rather slowly. Later it catches up, and the curves x and X1 approach
each other, indicating that the load maximum is passed and that the tire
expands. : '

Figure 15 shows the load and its breakdown into the damping force
and the elastic (air) force according to the two terms of equation (25).
Because of the bulbous end of the metering pin the damping force builds
up rapidly, but then the orifice opens up and the increasing air pres-
sure in the shock strut cannot compensate the decline of the damping

force. o

Dimensioning of Metering Pin

For reasons of weight saving it is desirable that the shock-strut
force rise guickly to a high value and then remain at this height for a
sufficient time to bring the mass m; to rest. As a practical means ' '

for this purpose, the metering pin has been introduced into the design-

of shock struts. Now, since there is but one metering pin, it will mnot .
be possible to obtain ideal results for different impact conditions, but

it is possible to pick out one landing case of particular importance and

to shape the metering pin so that in this case .a desired load history is »
obtained. The shape of the pin which has been found for this case must,

of course, be subjected to a critical study in two respects: It must be
acceptable to the workshop, and it must yield at least tolerable load-

time diagrams under other landing conditions. Tk= final compromise is

a true engineering decision which cannot be replaced by an analytical

device.

There is no need to specify exactly how the impact force should rise
from zero up to a certain level. 1In this first part of the load history
the tire has an important influence, and it will be enough to choose the
orifice opening A3 so that not too much stroke is lost while the force

builds up.

But when at avcertain time t = 1t' the force F; has reached a
certain value, say F; = F', then it may be desirable to keep it constant
on this level. If it is agreed to neglect the unsprung mass m, equa-
tions (28) are simply

mlic'l + F' = Wl (3}4‘3)

F' = koXp - | | (34Dp)
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and it follows at once from equation (34b) that X, = Constant, say,

Equation (3Ma)‘presents a simple integration problem and yields

. . W, - F
X) = %' (- )

oy

. Wl - F! 5
. Xl = Xl' + Xl'('t - “t') + -—E.T(t - t')

where il' and xl' are the values which the variables have assumed
at t =1t'. From equation (28¢c)

X =Xx - xQ’

and these values may now be introduced in equation (25) of the oleo strut,
which then yields A3:

‘ z A 4
2 00
= -1F'' - A r_ {— (35)
A32 pA23i2 : 1 0<;OAO = XA1>

This idea has been applied in two ways to the numerical example of
the preceding section.

When looking at figure 15, one might think it useful to keep Fl
for some time on its peak level, thus decelerating faster the vertical
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motion of the airplane without imposing a higher dynamic load on it.
This would result in a saving in stroke and hence in weight of the
shock strut. In this way the curves marked "I" in figures 16 and 17
have been obtained. The corresponding orifice area is shown in fig-
ure 13 by the line I. To keep the impact force at its peak level, the
orifice area must be decreased relative to the original design, and it
comes down to zero when the motion of the airplane is stopped. The
steep descent at the end of this curve is, of course, not acceptable
for the design, since it means a complete plugging of the orifice and
would lead to a high load peak in a case of harder landing; but the
upper part of the curve may lead to an improvement of the design.

One might think of another modification of the load-time curve,
cutting away the peak and keeping F; as long as feasible on a medium

level, say at F' = 46,600 pounds. When this is done, the curves
marked "IT" in figures 13, 16, and 17 result. They show that in this
case a slightly longer stroke is needed than in the original design,
but there is a considerable saving in dynamic load.

Since the rise of F; is interrupted in this case, the orifice

must be opened wider, and figure 13 shows that most of the bulbous end
of the pin must be removed. The transition must, of course, be smoother
than that shown in the diagram, and this would lead to a rounding of the
corner in the load-time diagram (fig. 17). Except for this necessary
modification and for the steep end of the A3 curve, the solution seems

acceptable, provided that the pin shaped in this way proves to be satis-
factory in other landing cases. .

But there is still one essential point that needs discussion.
Figure 18 shows the velocities il and x for all tliree cases. For

the original pin heavier lines have been used and the two modifications
are marked "I" and "IT." The first modification does not show anything
in particular, but for the second modified pin x Jumps suddenly from
one value to another and so does Xp = X1 - %X. Now, a sudden change of

the velocity iz will, of course, meet with the inertia of the unsprung
mass, and the metering pin II cannot be accepted without discussing this

influence.

‘Starting from equations (26) and putting F1 = F':

mlil =Wy - F!

m2§2 + k2x2 = F!
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The first of these equations is identical with equation (3ka), and the
second yields an undamped vibration:

T
X, == + A cos o(t - t') + B sin o(t - t')

2 Ik

w = /m2

Now, at t = t', when this vibration begins,

Xy = %' = F'/kp

.}.(2 =}.{2

and hence

T
Xy = xz' +_7%— sin o(t - t')

When it is assumed in the example that mp/m; = 0.025, the circular

frequency of these vibrations is w = 69.5 second'l, that is, about
10 cycles per second.

The stroke x will show the same undulation as X5 and so will

the metering pin. Of course, nobody would think of building a metering

pin of that shape, in particular since the length and location of these
undulations would depend on the arbitrary choice of the conditions under
which F; is kept constant. As soon as a streamlined metering pin is
chosen corresponding to the simplified analysis, the force Fi will ‘
fluctuate slightly and thus provide the necessary damping for the transient
vibrations of xp and x.

There is still a better way of handling this last question. Since
it is not feasible anyway to make a metering pin with a sudden change of
cross section, it is better to assume a force diagram on which the corner
is well-rounded, say by a parabola

_ 2
Fl =cy + cgt + c3t

which is so chosen that there is no large discontinuity in dFl/dt.
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When this force-time relation is introduced into the equations of
the landing gear, they may easily be integrated, and the resulting
expressions for x and X along with F may be introduced into equa-
tion (35) to find A3 and hence the cross section of the metering pin.

The short broken line at the outset of the horizontal line marked
"II" in figure 17 represents such a parabolic rounding of a corner in
the force diagram. The corresponding values of x and A3 have been

indicated by broken lines in figures 18 and 13. One may recognize that
no great change of the metering pin is needed to make the wheel motion
much smoother, and the corner in the force diagram might still be rounded
much more without a substantial loss of deceleration for the airplane.

ADDITIONAL NONLINEARITIES

Tire

The elastic resistance of the tire depends only in .small part on
the elasticity of the rubber and is essentially due to the compression
of the enclosed air. During the landing impact this compression is
nearly adiabatic and therefore the relation between the tire pressure
and the deflection x, 1is nonlinear. On the other hand, the relation

between the pressure and the force F2 is nonlinear also because the
tire flattens. On the whole, these and some other influences seem to
compensate to some extent, and load-deflection curves from tests may be

fairly well approximated by a straight line. This is illustrated by
figure 19 which shows such a test result.

For design purposes it does not seem worth while to replace, under
these circumstances, the linear relation (equation (la)) by anything more
complicated.” However, for the evaluation of tests it may be advisable -
to use the best available information on the behavior of the tire.

The nonlinearity of the tire becomes severe when it comes to
bottoming. Then the force F2 may rise to high values without an
appreciable further increase of Xo. In general, bottoming should, of

course, be avoided, but when it comes into consideration, then egua-
tion (la) can no longer be applied, and it must be replaced by the general

relation

Fo = FE(XE)




8C

NACA TN 27h3 - ' 57

which represents an empirical function determined from tésts. The
equations of motion are then these: :

m13£1 + Fl().c, }X) = Wl ' (368.)

mX, - Fi(x, x) + FQ(XE) =0 ‘ (36b)

instead of equations (26a) and (26b).

Because of the prestressing of the oleo strut these equations are
not valid until the shock-strut force has reached the prestress value Fo.
For this initial phase of the impact the procedure described in the
paragraph following equation (26c) must be applied. Since it covers
but a small part of the whole impact, one may use there the linear
law Fp = kpxp, the spring constant ko being taken from the initial

tangent of the load-deflection curve of the tire:

dF.(x
)]
2 dX2

X2=O

For equations (36a) and (36b) then the initial conditions (equa- -
tions (27)) are the same as those for equations (26). The equations are
solved by numerical integration and table 1 may be adopted, changing
only the heading of column (9) where Fo 1is written instead of KoXo

and then using‘a graph of the function Fz(xg) to fill this column.

In most cases it will be possible to neglect the mass my. Then
equations (36) are rewritten in the form :

mX) = Wy - F2(x2) (37a)

Fl(i,Ax) = Fg(x2> (37b)

which corresponds to equations (28). For the numerical integration use
table 2, writing Fp = F; at the top of column (6) and filling this
column with the help of the graph for FQ(XQ). :
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£

In both cases, equations (36) and (37), the integration step must
be decreased appropriately when approaching the region where the tire
bottoms.

Kinematic Nonlinearities

In the equations of motion one needs the second derivatives of the
displacements x; and xp, the accelerations of the masses m; and mp,

respectively. For the shock strut, the stroke x is needed. Thus far
it has always been assumed that x 1is equal to the difference x; - Xo.

However, this relation holds only in the simple case, when the upper part
of the shock strut (usually the barrel) is rigidly connected with the
airframe and the wheel is attached directly to the lower part (piston).

A correction is already needed when the shock strut is inclined from

the vertical (fig. 20). In this case

X3 - %
cOos8

X =

The changes which this relation requires in the intergration schemes
are obvious and there is no need to discuss them in detail.

However, there are cases in which the relation between x and
(Xl - x2) is nonlinear. Figure 21 illustrates what is meant. Most of

these devices have disappeared from current practice, but in a time of
rapid development it is advisable to discuss briefly how similar cases
may be handled. For all these landing gears a nonlinear relation

X = f(xl - XE) : - (38)

can be established by trigonometric methods. By differentiating it with
respect to time, the relation ’

3 dfx - X . .
- Hﬁ - %)

2

ft(xl - XQ)(il\' XED o (39)

is derived. The above two equations take the pléce.of equation (26c)
and the corresponding relation for the velocities.
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Table 1 must now be replaced by table T, in which columns (5a),
(6a), and (6b) have been added. Columns (5a) and (6b) are filled from
the preceding ones and column (6a) is filled from a formula or a graph

TABLE 7

(W@ [W ]G] (sa) [(6) {(6a) | (6v) |(n) |(®) |9 [a0)] (1) [(12)

to|x % X | %y |x] - %[ x £ J'cl-)'ce X Fqy kex2 X, |Wy -F ';El

for f'(xl - xg). Then equations (38) and (39) are used to fill
columns (6) and (7). Everything else is done as explained for

table 1. A

When my 1is neglected, table 8 is used instead of table 2. Again

additional columns for (Xl - xg), (il - ié), and f' are provided.
Column (5) is filled with the help of equation (38); column (7a), from

TABLE 8

(6) [(T)|(Ta)| (10) {(8)] (9) [(20)

~—

(1))(2) [(3) || (4a) [(5

t % il Xolx) = X5 X Fl x | £! X - %] % Wy - Fl Ei

column (La) with a graph or formula for f'(xl - x2); and column (7b),
with equation (39). :

These are very simple changes, the numerical integration being a
very flexible instrument that can be adapted to almost every special

requirement.
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THE AIRPLANE AS A WHOLE

Introduction

In most investigations of landing gears the airplane is represenfed
by a single mass m; riding on a system of springs and dampers, with

perhaps a small additional mass o, representing the wheel. All the

preceding sections of this report are exclu81vely coricerned with this
model. :

However, the real airplane is a three-dimensional structure, and when
one or more of its wheels hit the ground, it may receive not only a
vertical acceleration but also angular accelerations sbout different
axes. These angular accelerations and the rotatory motion resulting
from them will, of course, influence the landing impact.

A detailed study of this phenomenon leads into rather lengthy
computations. Their quantitative results will depend on many details
and may vary widely between different types of airplanes. This section
will therefore be restricted to some general considerations concerning
the best method of analysis.

There are two principal problems, the symmetric case in which both
wheels of the main landing gear strike the ground simultaneously and in
identical conditions, either earlier or later than the auxiliary gear,
and the asymmetric case in which the two wheels of the maln gear touch
the ground one after the other

Symmetric Impact

Figure 22 shows the side view of an airplane as far as it is of
interest for the present purposes. The point C is the. center of gravity
where the mass m 1is located. To the right is the main gear; to the
left, the auxiliary gear which may be either a nose gear or a tail gear.

In figure 22 the airplane is shown in the position which it has at
the time t = O, when the main gear makes its first contact with the
runway. From this time an impact. force ¥ of increasing magnitude will

act in each main gear and 1t will cause both a deceleration of the
vertical movement of the center of gravity and a pltchlng motion gbout
this point. The equations of motion are
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where is the moment of inertia of the airplane with respect to its
transverse axis.

The resultant acceleration at the’upper end of the main 1anding
gear will be

e = .l+ b4
Xl 4 aw

|
1
k
ES
+
L
\V]
~——
+
Bi=

In the section "Linear Spring-Damper Systems" there was written

F W
. 1 1
X R e
1 m o om

and the two expressions are equivalent if one chooses

m = ——
1 : )
2(1 +-’3'i§—)
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i
a2 1+ 12
]3’

Wl=

o=

where iy = VIy/m 1s the radius of gyration. These formulas show that

it is perfectly justifiable to study an isolated landing gear, provided
one does not simply use as mass m; one-half of the airplane mass.

However, this procedure is subject to two essential limitations: It
can be applied only until the auxiliary gear comes into action and must
at least be modified when the rotation of the airplane leads to a sub-
stantial change of the angle of incidence of the wing and hence to a
change of the load W. '

Consider the second point first. The angular position of the air-
plane is determined by the angle a between the ground and a reference
line in the plane of symmetry of the airplane. This reference line is
so chosen that a = 0 when all three wheels of the airplane just touch
the ground without pressure. The angle o which is so defined is not
identical with the angle of incidence of the wings, but the two differ
only by a constant which depends on the design of -the airplane.

Since only small values of a need be considered, it may be
assumed that the 1ift and hence W 1is a linear function of a, say:

W=W'+Wa

but since one must use numerical integration methods anyway an arbitrary
function

W= Wla)

may be assumed when this appears to be necessary. The part of this
weight which must be attributed to one main landing gear is then

. 1 2
Wy(a) = W(a)——% (1)

2 (32 + iy2
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Equatibns of motion (L40) are now written in the following form:

¥ = - 2=(2Fy - W) (Loa)

4=-=F - (k2p)

Additionally, there is a relation which connects Fl with x
and x, for example, equation (25) of the oleo strut, the relation
X = X7 - Xp, and the elastic equation of the tire F, = F1 = koxo.

Table 2 which 1s used for the one-gear problem must now be extended -
so that it may take care of equation (L42b). It looks then as shown
in table 9:

(1) 1(2) [(3) [ (W) [ (5) [(6) {(T){(8) [(9)[(10)](11) | (12) [(13)|(1k)

Columns (2) to (5) and (8) to (10) are treated exactly as are the
corresponding columns of table 2; the first line in columns (6) and (7)
is filled in from two additional boundary conditions (a given, & =0
Also the starting value of Wj will be known and must, of course, check
with column (6) and equation %hl). Column (12) is self-explanatory, and
columns (13) and (14) follow from equations (42). Besides the tables
for the integration of ¥,, X;, and X5, an additional table is now

needed to integrate o and &. With the results of these integrations
the second line may be started.

Of course, this analysis does not consider the posgsibility that the
prilot uses the controls to counteract the pitching movement of the air-
-plane. If he does so, a human element comes into play which is not
easlly incorporated in mathematical formulas. This uncertainty may
upset the usefulness of the procedure and will justify the application
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of the simpler table given previously. This simplification, commonly
used in landing-gear analysis, is still more justified by the results ,
represented in figure 6, which show that the exact magnitude of the

effective weight W; 1s of secondary importance for the interesting ’

portion of the impact.

Whether a simple one-gear analysis is made or the variability of
W7 1s taken into account, this computation ends at the moment when the
auxiliary gear comes into action. The time t = t' when this occurs
is found in the following way: During the first phase of motion the
acceleration at the upper end of the auxiliary gear is:

x3 =2z - bw

2Fl( do) W
= -0 ] - —] 4 -
m i 2 m
Y
When it is assumed that the airplane approaches the ground with the -
vertical velocity V, but without an angular velocity, then the velocity

i3 for t >0 1is

B I

.2 " £ |
- ab
1 o=y.-2y ~® Fpoat+ 3 | Wat (43)
3 1,2 Jo m Jo

¥

‘Under the integral signs F; and W must be introduced as functions

of t according to the analysis of the main gear.

The displacement X3 of the auxiliary gear is best counted from

the position in which the wheel just touches the ground; When the
airplane lands at an angle a (fig. 22), then X3 = -(a + b)a at .

t =0. For t >0

. . .
x5 = -(a + bla + x. dt : (4h) -
: I

and the time when this equation yields X3 = Q is the time t = t'.
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When W =0 and ab < iyz, the velocity i3 will decrease and

the impact of the auxiliary gear will be softer than it would be if
this gear had hit the ground before the main gear. If W #£ O, there
is an additional positive term in equation (43) and, since the airplane
is still falling under the influence of the force W, the velocity %3

may increase. When ab > iyg, then i3 will certainly increase, pos-

sibly even very much so, and the auxiliary gear may strike the runway
rather forcibly. : '

When all wheels are in contact with the ground, tlie equations of
motion are rather involved. When all landing gears have a spring-
damper unit as a shock strut, no damping in the tire, and no unsprung
mass, the problem is of sixth order. It is of little value to establish
the formulas for the linear case, but it is useful to develop a numerical
procedure which may be applied in linear as well as in nonlinear cases.

_ The equations of motion contain now the forces in main and
auxiliary gears (fig. 23): -

( , (45)
I_le = -2Fla. + F3b
-
Then there are two kinematic relations
}‘(1 = é + aw .
_(L6)

z - b

i

X3

Differentliating there and then introducing %Z and & from equations (45)
yield '

-
2F 2 F
a2 £) By
v y (u7)
r T
w oo 2Zaf, s\ _F3f  ¥B\ W
3~ m iye " m iye m J
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These equations may be used in the following way: For each landing
gear a single-gear analysis is started according to the instructions
given in the section "Intentional Nonlinearities." For the main gear
it begins at t = 0 and runs exactly as explained there until t = t'.
For the auxiliary gear it begins at +t = t' with x3 = 0 and the

value of %3 which follows from equation (43). When it is not desired

to neglect the unsprung mass, table 1 is used, otherwise table 2. In
either case the line for t = t' may be filled up to the last two
columns, but the last two columns are replaced by some columns which are
adapted to equations (47). They yield ﬁl and 23 in terms of the

forces F of both tables, and these values are now integrated just as
was done with ii in table 4. '

A step-by-step integration of this kind requires twice as much
time as a single-gear analysis and will yield everything needed for
both gears.

One-Wheel Landing

It is possible that a landing airplane may approach the runway
with one wing low and that the wheels of the main gear do not hit the
runwey at the same time (fig. 24). There are then again two phases, a
first one while only one wheel is in contact with the ground and a

second one when both wheels are.

In the first phase there is only one force Fj, having the

distances a and c¢ from the lateral and longitudinal axes, respec-
tively. It produces the following accelerations:

Vertical at center of gravity:
mz = -F; + W
Angular with respect to lateral axis:

Lydy, = -Fia

Angular with respect to longitudinal axis:

I}{d)x = "FlC
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1is

K = 7+ ady + cly

and when use is made of the preceding equations there is obtained

F 2 2
Xl = .2 1+ 28 o, w
m Iy

Again 1t is useful to introduce the radii of gyration by:

x = Iy/m

e
Il

y T

and to write

my

67

The resulting acceleration at the upper end of the active landing gear
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With these notations the impact problem is again reduced to a one-gear
problem until the other wheel meets the ground. The time t = t" at
which this will occur may be found in the same way as in the case of a
two-point landing.

The acceleration at the top of the second main gear is

X3—

&
F

1]
1
l"d
H
™
+
mm_
1
0
1%
~— -
=

Integrating once yields the velocity:

and integrating again,

X3 = -2cB -+ E 5{3 dt

At the time t = t" when x3 = 0, the one-gear problem ends and
from then on both main gears must be dealt with simultaneously.

This is done as in the preceding section, but the formulas differ
in details because there is still one degree of freedom left, the
rotation about the transverse axis of the airplane. During this phase
of the landing impact the equations of motion (fig. 25) are as follows:

mi = -Fp - F3 + W

Iydy = -(Fy + F3)a

I by = (—Fl + F3)c
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Besides there are the kinematic relations

3c'l='z’+aday+cd>x
3{'3=‘z'+ad>y-c<i>x

and by combining both sets of eguations the following equations are
obtained which correspond to equations (k7):

‘\
F 2 2 F 2 2
¥ = - =1+ 2y ) U312 L)LY
Y X ¥y X
> (48)
F 2 2 F 2 2
i3=_~3;1+.?__2._£_§__3.1+_§‘_2_+_c._2 +E.
m iy ix m iy iy m
J

These equations may be handled exactly in the same way as equations (%7,
with, however, the restriction that the auxiliary gear must still be

off the ground. As soon as it makes contact, the relations become more
involved, but it seems at present not necessary to elaborate the details
of the third phase of the impact which then will follow.

REVIEW OF GERMAN LITERATURE ON LANDING-GEAR IMPACT

Before the last war in Germany almost no theoretical work was done
on landing-gear problems, and it seems also that in other countries
interest was low.

During the war in Germany new and unexpected demands could fre-
guently best be met by adapting an existing airplane type, with its
well-established mass-production facilities. Suc¢h modifications usually
resulted in an increase of weight without supplying additional space
into which a larger wheel could be retracted. Frequent tire troubles
were the unavoidable consequence, resulting in a strong impetus to
landing-gear research. All but one of the papers reviewed here belong
to thils period of wartlme research.

When studying this German wartime literature, one must keep in
mind during what period and under what c1rcumstances the work was done.
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A1l of these papers appeared in 1943 and 194k and were thus the outcome .
of a rather short period of research. They represent an intensive
attempt to tackle a long-neglected problem. But before the work had
yielded results of final validity, it was cut off early in 1945 by

the national catastrophe. More than 6 years have elapsed and the
landing-load problem has undergone changes. Some of the statements

made in those papers have lost interest, others are no longer applicable
without modification, and most of the analytical methods are either
oversimplified or too complicated.

Nevertheless, it is still worth while to survey this literature
briefly because it contains many of the ideas and methods which are
still the basis of. landing-gear analysis. Indeed, in writing this
report the author has drawn much useful information from the German
publlcations which are reviewed on the following pages.

The goal of the early landing-gear research was influenced by the
attitude of official regulations. They reguired that a drop test be
"made in which the upper end of the shock strut was connected with a
mass (ml in the notation of this paper) and the two dropped on an

anvil. At the instant when the anvil was struck, the weight W; was
compensated by admitting compressed air to two cylinders. The load- / .
stroke curve obtained by this test was then considered as "the" load-

stroke curve of the shock strut and was employed in all landing cases -
which had to be considered in the design of the airplane. Consegquently,

the effort of the early research was directed toward the investigation

of load-stroke diagrams of shock struts.

The first paper that must be mentioned here, and the only one that
appeared before the war, was written by Michael (reference 1). It gives
a detailed analysis of the linear spring-damper system but pays only
slight attention to the tire. A special feature of this paper is the
use of spring diagrams in which the force is plotted either against the
stroke with the rate of stroke as a parameter or, inversely, against
the rate of stroke with the stroke as parameter. These diagrams are
shown also for shock struts with dry friction or with velocity-square
dampers, and they are used for a graphical solution of the differential
equation. Such diagrams are no longer possible when a second spring
(the tire) is present, and therefore they have not been employed again

in later papers.

The first papers of the war period were still focused on the load- L
stroke diagram. Schlaefke (reference 2) criticized the drop-test method
and suggested replacing the buffered drop test by an unbuffered test,
that is, omitting the air cylinders and with them a possible source of -
inaccuracy. His paper uses the theory of the linear spring-damper system
to establish some relations between the results of both tests.
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In a later paper (reference 3) the same author realizes that the
damping in the oleo strut is far from proportional to the rate of
stroke. He compares load-stroke curves for linear and for velocity-
square damping and arrives at the strange conclusion that the former
look more realistic. The method used for the analysis of the nonlinear
problem is of interest. A balance of kinetic and potential energy is
established and from it, a differential equation between % as dependent
and x as independent variable. When it is solved, the damping force
(proportional to %2) is also known in terms of x. However, this
appreach is not possible in the presence of a tire.

In the next group of papers the tire makes its appearance. A
paper by Kochanowsky (reference U4) gives a very detailed analysis of
the oleo-tire combination as shown in figure 1. Kochanowsky finds that
the unsprung mass is of no great importance for the landing impact and
that the problem may readily be simplified by assuming my = 0. The
study of this paper (and of many others) is rendered difficult by the
author's habit of using for all and everything dimensionless guantities
so that the reader has to learn first a system of not very suggestive
notations before he can follow the analysis or read the diagrams.

Another'paper by Schlaefke (reference 5) covers approximately the
same ground.

After having studied the linear oleo-tire system, the next logical
step would have been to consider a nonlinear shock strut, but, inciden-
tally, the few papers which did this were older than Kochanowsky's com-
prehensive paper on the linear system. One of them is by the same author
(reference 6), and it was not thought to be a study of a nonlinear case.
It is concerned with a special type of spring which has long been used
in railroad-car bumpers and was introduced in landing gears. It con-
sists of a pile of rings with conical sides (fig. 26). When it is
subjected to an axial compression, the hoop stresses in the rings are
alternatively tensile and compressive. During the elastic deformation,
the rings slip on one another and the pile becomes shorter. Because
of the slip, there is considerable dry friction, and when the load F
is decreased, the deformation x is not immediately decreased but
follows a law which is described by figure 27. The area of the tri-
angular loop represents a loss of energy and the ring pile may thus be
used as a damped spring. Kochanowsky's paper considers a shock-strut
and tire combination in which the strut has no other elastic or damping
element except such a ring-pile spring. During the first upstroke the
analysis is extremely simple, since not even damping appears explicitly
in the equations; but when the motion is followed beyond the force
maximum, it is linear only in sections but nonlinear on the whole. The
paper is an interesting study, but the ring-pile shock strut is not
versatile enough to stand the competition with the modern oleo strut,
and the problem is now obsolete.
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The other paper which considers a nonlinear shock strut is a very
serious and very detailed study by Marquard and Meyer zur Capellen
(reference 7). The authors consider velocity-square damping and
polytropic compression of the air, formulate differential equations,
and integrate them numerically. Unfortunately, the authors overestimate
the accuracy requirements of the analysis. In their tables values are
given to six and even seven significant digilts, and consequently they
employ an exact but very tedious method of step-by-step integration.

In addition to the detailed treatment of the nonlinear shock strut,
the paper is remarkable for another reason. It not only considers an
oleo-tire system with a very realistic shock strut, but it also considers
the motion of the whole airplane in its plane of symmetry. In a second
paper (reference 8) the same authors extend their investigation to cases
of unsymmetric landing.. But here also the attempt at exactness goes too
far when the decrease of horizontal speed during the short impact time
is taken into consideration. This is pointed out in a paper by Schmitz
(reference 9). This author also considers the pitching motion of the
airplane and includes the ensuing change of the 1ift, but he falls back
to the old idea of "the" load-stroke curve and fails to realize that
the cooperation between the elastic reaction of the air and the damping
force caused by the orifice depends largely on the conditions of the
impact.

Besides the landing impact, the taxying of the airplane has always
met with interest. Michael's paper (reference 1) pays attention to it,
and Kochanowsky's papers (references 4 and 6) both consider the taxying
impact in full detail. In these papers the statement is made and proved
that when the airplane rolls over a sinusoidal ground swell, the mass m;

travels practically on a level path and that therefore the analysis may
be made on the assumption that m; = . ‘ '

Besides these papers there are two by Schlaefke in which taxying
is considered. One of them (reference 10) covers the same ground as
the corresponding part of Kochanowsky's paper (reference 4). The second
(reference 11) is a short note concerning the impact during the take-off
run. It seems to be the only paper devoted to this subject, and not
much information is found in it. '

Additionally, there are a number of reports on experiments. Most
of them were tests made by the airplane manufacturers and served
essentially the purpose of improving a new airplane model to the point
where it was ready for production. Today, it is difficult, if not
impossible, to draw other than qualitative information from these reports
since the airplanes, shock struts, and tires used in these tests no
longer exist and details needed for an analysis may no longer be obtained

readily.
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However, one of the experimental papers must be mentioned in this
review, a short report of H6ke (reference 12) on the experiments he
made in the Deutsche Versuchsanstalt flir Luftfahrt. He measured, as
functions of time, the vertical velocity of the airplane immediately
before and during the landing impact and the vertical and lateral forces
on the wheel. The fine experimental technique of the velocity measure-

ment is described in the paper.

. Stanford University

Stanford, Calif., November 15, 1951
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Figure 1l.- Representation of shock strut by spring and damper arranged
in parallel,
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(a) At -t = 0. (b) At some later time.

Figure'-2.— Mechanical system in two positions. |
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Figure 3.- Influence of unsprung mass.
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Figure 4.- Influence of dsmping on landing impact.
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Figure 5.~ Influence of spring constants on landing impact.
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(c) Displacement of airplane and deformation of tire.

Figure 5.- Concluded.
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Figure 6.- Influence of weight and 1lift on landing impact.
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Figure T.- Landing gear encountering obstacle during taxying.
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Figure 8.- Displacement of wheel when obstacle is encountered during taxying.
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Flgure 9.- Effect of encountering obstacle during taxying on forces in
-shock strut and in tire.

Figuré 10.- Different forms of oleo struts.
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Figure 11.- Illuétration of trapezoid method of integration.
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Figure 12.- Illustration of polynomial method of integration.
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Figure 13.- Cross section of metering pin.
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Figpre 1k.- Displacement X, and stroke x against time.
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Figure 15.- Force-time history of shock strut.
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Figure 16.- Displacement x7 and stroke x for different metering pins.
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Figure 17.- Force-time history for different metering pins.
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Figure 18.- Vertical velocity %, and rate of stroke x for different

metering pins.
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Figure 19.- Load-deflection curve of a tire.
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Figuré 20.- Example of landing gear with shock strut inclihed from vertical.

puts

Figure 21.- Cases for which relation between stroke and displacements
is nonlinear.
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Figure 22.- Schematic side view of airplane at time of first contact.
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Figure 23.- Schematic side view of airplane at time

of three-wheel contact.
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Figure 2U4.- Schematic views of airplane during one-wheel landing. A
Situation at first contact. -
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Figure 25.- Schematic views of airplane during one-wheel landing.
Situation when second wheel hits runway.
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Figure 26.- Ring-pile spring.

Figure 27.- Force-stroke diagram of a ring-pile spring.
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